0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет теплопотерь через окна

Расчет теплопотерь помещения и требуемого сопротивления теплопередаче наружных ограждающих конструкций при раздельном учете лучистого и конвективного теплообмена

Ю. А. Табунщиков, президент НП «АВОК»

Проведенные исследования показывают, что традиционные расчеты теплопотерь помещения и требуемого сопротивления теплопередаче наружных ограждающих конструкций без раздельного учета лучистого и конвективного теплообмена в помещениях, содержащиеся в существующих нормативных и методических документах, приводят к достаточно значительным расхождениям в расчетах.

В проектной практике довольно часто встречается задача по определению теплопотерь помещения и расчета требуемого сопротивления теплопередаче наружных ограждающих конструкций, в котором одна или несколько поверхностей имеют существенно различные температуры. К таким поверхностям можно отнести угловые помещения с двумя наружными стенами, помещения верхнего этажа с двумя наружными стенами и покрытием, помещения плавательного бассейна и помещения с обогреваемым полом, в которых температура поверхности воды или поверхности пола существенно отличается от температуры внутренних поверхностей наружных ограждений.

Тепловой поток на внутренней поверхности наружной ограждающей конструкции следует рассчитывать по формуле [1, 2], учитывающей конвективную и лучистую составляющие этого теплового потока:

(1)

где a к – коэффициент конвективного теплообмена между внутренней поверхностью наружной ограждающей конструкции и воздухом помещения, Вт/м 2 •°С;

a л – коэффициент лучистого теплообмена между внутренней поверхностью наружной ограждающей конструкции и окружающими поверхностями, Вт/м 2 •°С;

tв, tвп – соответственно температуры внутреннего воздуха и внутренней поверхности наружной ограждающей конструкции, °С;

tокр – температура окружающих поверхностей, °С, вычисляется по формуле:

(2)

где ti, Fi – соответственно температуры, °С, и площади, м 2 , окружающих поверхностей.

Формулу (1) перепишем следующим образом:

(3)

Рассматривая правую часть формулы (3), можно сделать следующие выводы:

1. Если tусл > tв, то теплопотери помещения будут превышать значение, рассчитанное согласно СНиП II-33-75* «Отопление, вентиляция, кондиционирование воздуха», без раздельного учета лучистой и конвективной составляющих теплообмена на внутренней поверхности наружных ограждений.

2. Если tусл 2 •°С/Вт; Rокн – приведенное сопротивление теплопередаче окна, м 2 •°С/Вт; q1ст – тепловой поток через наружную стену при раздельном учете лучистого и конвективного теплообмена, Вт; q1окн – тепловой поток через окно при раздельном учете лучистого и конвективного теплообмена, Вт; q2ст – тепловой поток через наружную стену без раздельного учета лучистого и конвективного теплообмена, Вт; q2окн – тепловой поток через окно без раздельного учета лучистого и конвективного теплообмена, Вт.

Далее рассмотрим влияние раздельного учета лучистого и конвективного теплообмена при расчете сопротивления теплопередаче наружных ограждающих конструкций.

Рассматривалось три типа помещений с системой воздушного отопления, имеющих соответственно одно, два и три наружных ограждения: рядовое – с одной наружной стеной, угловое – с двумя наружными стенами, верхнее угловое – с двумя наружными стенами и покрытием; в каждом из помещений имелось окно (рис. 1).

Схема исследуемого помещения

В процессе расчета варьировались температура наружного воздуха tн от –15 до –25 °С; геометрические параметры помещения: отношение ширины к высоте В/Н – от 1 до 2,5, отношение длины к высоте L/Н – от 1 до 2,5; относительная площадь остекления наружной стены fост. = Fок / BH – от 0,3 до 0,7 (Fок – площадь окна); приведенный относительный коэффициент излучения между окном и светонепроницаемыми ограждениями e ок пр / e ок пр1 = 0,84; e ок пр2 = 0,28.

При анализе полученных результатов выявлено, что соотношения геометрических размеров В/Н и L/Н практически не влияют на исследуемые параметры, поэтому при дальнейшем рассмотрении они не учитываются.

При tв = 18 °С и ∆tн = 6 °С температура внутренней поверхности наружного ограждения составляет t ст =12 °С, температура внутренней поверхности покрытия при tв = 18 °С и ∆tн = 4 °С – t пот = 14 °С. Расчетные значения t отличаются от нормативных и в большой степени зависят от типа помещения: в помещении с одним наружным ограждением t ст = 10–10,5 °С, с двумя – t ст = 9,2–9,6 °С, в помещении с двумя наружными стенами и покрытием t ст = 8,7–9,0 °С, t пот = 10,4–11,2 °С.

Естественно, что теплопотери помещения, рассчитанные с учетом конвективной и лучистой составляющих теплообмена, оказались меньше теплопотерь, определенных по СНиП 2.04.05-91*. При увеличении перепада между tв и tвп возросла конвективная составляющая теплообмена, однако лучистая составляющая существенно уменьшилась. Это объясняется тем, что температуры внутренних ограждений не равны температуре воздуха (для различных типов помещения tокр = 12,5 – 15,5 °С) и, кроме того, для помещений с несколькими наружными ограждениями в расчет включались их внутренние поверхности. На рис. 2 показано распределение температуры поверхностей помещений, рассчитанное в соответствии с нормами и при раздельном учете лучистого и конвективного теплообмена, учитывающего разности температур четвертых степеней [3]. Стрелками обозначено направление лучистых потоков. Как видно из рисунка, в реальных условиях происходит перераспределение этих потоков и поверхность потолка может даже отдавать лучистое тепло в помещение.

Распределение температуры поверхностей в помещении, рассчитанное:
а – по СНиП 2.04.05–91*; б – по формулам [2] при В/Н = 1,0; L/Н = 1,5; fост = 0,7; e ок пр = 0,84

Расчетом установлено, что при уменьшении e ок пр с 0,84 до 0,28 температура внутренней поверхности окна снижается на 2–3 °С из-за резкого уменьшения (на 55–60 %) лучистого теплообмена с другими поверхностями помещения, которое не компенсируется увеличением (на 20–30 %) конвективного теплообмена. Вследствие этого снижаются и теплопотери помещения.

В помещениях с наружными ограждающими конструкциями, рассчитанными по СНиП 23-02-2003 (где коэффициент теплоотдачи внутренней поверхности принят постоянным), не обеспечивается нормативный санитарно-гигиенический перепад между температурами воздуха и внутренней поверхности наружной стены. Превышение расчетного перепада над нормативным составляет для рядового помещения 25–30 %, углового – 40–45 %, верхнего углового – 50–55 %.

В заключение отметим, что особенно важно раздельно учитывать лучистый и конвективный теплообмен в помещении при определении нагрузки на систему кондиционирования воздуха. Если расчет проводится без такого учета, то полученное значение нагрузки на систему кондиционирования может превышать требуемое в 2–2,5 раза. Рекомендуется производить расчеты в соответствии с рекомендациями АВОК Р НП «АВОК» 5.1-2008 по программе, которая учитывает раздельно лучистый и конвективный теплообмен в помещении.

Литература

1. Богословский В. Н. Строительная теплотехника. – М. : Высшая школа, 1982.

2. Табунщиков Ю. А. Математическое моделирование и оптимизация тепловой эффективности зданий. – М. : АВОК-ПРЕСС, 2002.

3. Табунщиков Ю. А., Климовицкий М. С. Расчет теплового режима помещения при раздельном учете конвективной и лучистой составляющих теплообмена / Сборник трудов НИИСФ «Тепловой режим и долговечность зданий», 1987.

Руководство по расчету теплопотребления эксплуатируемых жилых зданий

Формулы расчета теплопотерь дома

Первый шаг в организации отопления частного дома — расчет теплопотерь. Цель этого расчета — выяснить, сколько тепла уходит наружу сквозь стены, полы, кровлю и окна (общее название — ограждающие конструкции) при самых суровых морозах в данной местности. Зная, как рассчитать теплопотери по правилам, можно получить довольно точный результат и приступить к подбору источника тепла по мощности.

Базовые формулы

Чтобы получить более-менее точный результат, необходимо выполнять вычисления по всем правилам, упрощенная методика (100 Вт теплоты на 1 м² площади) здесь не подойдет. Общие потери теплоты зданием в холодное время года складываются из 2 частей:

  • теплопотерь через ограждающие конструкции;
  • потерь энергии, идущей на нагрев вентиляционного воздуха.

Базовая формула для подсчета расхода тепловой энергии через наружные ограждения выглядит следующим образом:

Q = 1/R х (tв — tн) х S х (1+ ∑β). Здесь:

  • Q — количество тепла, теряемого конструкцией одного типа, Вт;
  • R — термическое сопротивление материала конструкции, м²°С / Вт;
  • S — площадь наружного ограждения, м²;
  • tв — температура внутреннего воздуха, °С;
  • tн — наиболее низкая температура окружающей среды, °С;
  • β — добавочные теплопотери, зависящие от ориентации здания.

Термическое сопротивление стен либо кровли здания определяется исходя из свойств материала, из которого они сделаны, и толщины конструкции. Для этого используется формула R = δ / λ, где:

Если стена возведена из 2 материалов (например, кирпич с утеплителем из минваты), то термическое сопротивление рассчитывается для каждого из них, а результаты суммируются. Уличная температура выбирается как по нормативным документам, так и по личным наблюдениям, внутренняя — по необходимости. Добавочные теплопотери — это коэффициенты, определенные нормами:

  1. Когда стена либо часть кровли повернута на север, северо-восток или северо-запад, то β = 0,1.
  2. Если конструкция обращена на юго-восток или запад, β = 0,05.
  3. β = 0, когда наружное ограждение выходит на южную или юго-западную сторону.

Порядок выполнения вычислений

Чтобы учесть все тепло, уходящее из дома, необходимо сделать расчет теплопотерь помещения, причем каждого по отдельности. Для этого производятся замеры всех ограждений, соседствующих с окружающей средой: стен, окон, крыши, пола и дверей.

Важный момент: обмеры следует выполнять по внешней стороне, захватывая углы строения, иначе расчет теплопотерь дома даст заниженный расход тепла.

Окна и двери измеряются по проему, который они заполняют.

По результатам замеров рассчитывается площадь каждой конструкции и подставляется в первую формулу (S, м²). Туда же вставляется значение R, полученное делением толщины ограждения на коэффициент теплопроводности строительного материала. В случае с новыми окнами из металлопластика величину R вам подскажет представитель фирмы-установщика.

В качестве примера стоит провести расчет теплопотерь через ограждающие стены из кирпича толщиной 25 см, площадью 5 м² при температуре окружающей среды -25°С. Предполагается, что внутри температура составит +20°С, а плоскость конструкции обращена к северу (β = 0,1). Сначала нужно взять из справочной литературы коэффициент теплопроводности кирпича (λ), он равен 0,44 Вт/(м°С). Затем по второй формуле вычисляется сопротивление передаче тепла кирпичной стены 0,25 м:

R = 0,25 / 0.44 = 0,57 м²°С / Вт

Чтобы определить теплопотери помещения с этой стенкой, все исходные данные надо подставить в первую формулу:

Q = 1 / 0,57 х (20 — (-25)) х 5 х (1 + 0,1) = 434 Вт = 4.3 кВт

Если в комнате имеется окно, то после вычисления его площади следует таким же образом определить теплопотери сквозь светопрозрачный проем. Такие же действия повторяются относительно полов, кровли и входной двери. В конце все результаты суммируются, после чего можно переходить к следующему помещению.

Учет тепла на подогрев воздуха

Выполняя расчет теплопотерь здания, важно учесть количество тепловой энергии, расходуемой системой отопления на подогрев вентиляционного воздуха. Доля этой энергии достигает 30% от общих потерь, поэтому игнорировать ее недопустимо. Рассчитать вентиляционные теплопотери дома можно через теплоемкость воздуха с помощью популярной формулы из курса физики:

Здесь все величины известны, кроме массового расхода воздуха при вентиляции помещений. Чтобы не усложнять себе задачу, стоит согласиться с условием, что воздушная среда обновляется во всем доме 1 раз в час. Тогда объемный расход воздуха нетрудно посчитать путем сложения объемов всех помещений, а затем нужно перевести его в массовый через плотность. Поскольку плотность воздушной смеси меняется в зависимости от его температуры, нужно взять подходящее значение из таблицы:

Теплопотери в доме

Энергосбережение сейчас наиболее популярная тема в интернете. Еще бы, ведь экономить хочет каждый, а тем более в нынешних экономических условиях. Расчет потерь тепла при этом играет наиболее важную роль. Теплопотери в наиболее простом понимании это количество тепла, которое теряется помещением, домом или квартирой. Измеряются они в Вт. Возникают тепловые потери в доме из-за разницы внешних и внутренних температур воздуха.

В переходной и холодный период года температура на улицах падает, и возрастает разница температур внутреннего воздуха и воздуха на улице. И как уже мы упоминали, Второй закон термодинамики никто не отменял, поэтому тепло с ваших домов и квартир стремится его покинуть и обогреть холодную окружающую среду. Для снижения этих утрат тепла, делается утепление домов в различных видах от пенопласта и вентилируемых фасадов до современных теплоизоляционных материалов в виде шпаклевки. Главной же задачей в нашей профессии является поддержание в помещении комфортных параметров микроклимата. И в первую очередь, мы рассчитываем теплопотери для их компенсации.

Зачем делать расчет теплопотерь?

Когда же делают расчет потерь тепла в доме? Расчет теплопотерь обязателен при проектировании систем отопления, систем вентиляции, воздушных отопительных систем. Расчетные температуры берут из нормативных документов. Значение внешней температуры воздуха отвечает температуре наружного воздуха наиболее холодной пятидневки. Внутреннюю температуру берут или ту, которую желаете, или из норм, для жилых помещений это 20+-2°С.

Исходными данными для расчета служат: внешняя и внутренняя температура воздуха, конструкция стен, пола, перекрытий, назначение каждого помещения, географическая зона строительства. Все тепловые потери на прямую зависят от термического сопротивления ограждающих конструкций, чем оно больше, тем меньше теплопотери.

Для обеспечения комфортных условий пребывания людей в помещении нужно чтобы было правдивым уравнение теплового баланса

Qп+ Qо+ Qс+ Qк= Qср+ Qос+ Qпр+ Qлюд,

где Qп–теплопотери через пол, Qо–теплопотери через окна, Qс–теплопотери через стену, Qк- теплопотери через крышу, Qср–теплопоступления от солнечной радиации, Qос–теплопоступления от отопительных систем, Qпр–теплопоступления от приборов, Qлюд–теплопоступления от людей.

На практике же, уравнение упрощается и все утраты компенсирует система отопления, независимо водяная или воздушная.

Расчет теплопотерь

Получив исходные данные, проектировщики начинают расчет. Рассмотрим основные виды тепловых потерь и формулы их расчета. Теплопотери бывают: через стены, через пол, через окна, через крышу, через вентиляционные шахты и дополнительные потери тепла. Термическое сопротивление для всех конструкций рассчитывается по формуле

где αв – коэффициент теплоотдачи внутренней поверхности ограждения, Вт/ м 2 · о С;
λі и δі – коэффициент теплопроводности для материала каждого слоя стены и толщина этого слоя в м;
αн – коэффициент теплоотдачи внешней поверхности ограждения, Вт/ м 2 · о с;

Коэффициенты α берутся из норм, и разные для стен и перекрытий.

Первым делом рассмотрим теплопотери через стены

На них наибольшее влияние имеет конструкция стен. Рассчитываются по формуле: Коэф. n-поправочный коэффициент. Зависит от материала конструкций, и принимается n=1 если конструкции из штучных материалов,и n=0,9 для чердака, n=0,75 для перекрытия подвала.

Пример: Рассмотрим теплопотери сквозь кирпичную стену 510 мм с утеплителем минеральной ватой 100 мм и декоративным финишным шаром 30 мм. Внутренняя температура воздуха 22ºС, наружная -20ºС. Высотой пусть будет 3 м и длиной 4 м. В комнате одна внешняя стена, размещение на Юг, местность не ветреная, без внешних дверей. Для начала необходимо узнать коэффициенты теплопроводности этих материалов. Из размещенной выше таблицы узнаем: λк =0,58 Вт/мºС, λут =0,064 Вт/мºС, λшт =0,76 Вт/мºС. После этого рассчитывается термическое сопротивление ограждающей конструкции:

Rст=1/ 23 +0,51/0,58+0,1/0,064+0,03/0,76+ 1/ 8,6 = 2,64 м 2 ºС/Вт.

Для нашей местности такого сопротивления недостаточно и дом нужно утеплить лучше. Но сейчас не об этом. Расчет теплопотерь:

ß- это дополнительные потери тепла. Далее мы распишем их значение и станет ясно, откуда взялось число 10 и зачем делить на 100.

Далее идут тепловые потери сквозь окна

Здесь все проще. Расчет термического сопротивления не нужен, ведь в паспорте современных окон он уже указан. Теплопотери через окна рассчитываются по той же схеме, что и через стены. Для примера рассчитаем потери через энергосберегающие окна с термическим сопротивлением Rо= 0,87 (м 2 °С/Вт) размером 1,5*1,5 с ориентацией на Север. Q=1/0,87·2,25·42·1·(15/100+1)=125 Вт.

К теплопотерям через перекрытия относят отвод тепла через крышные и половые перекрытия. В основном это делается для квартир, где и пол и потолок представляет собой железобетонную плиту. На последнем этаже учитываются только потери сквозь потолок, а на первом лишь через подвальное перекрытие. Это обусловлено тем, что во всех квартирах принимается одинаковая температура воздуха, и теплоотдачу от квартиры к квартире не берут во внимание. Недавние исследования показали, что через не утепленные узлы примыкания перекрытий к ограждающим конструкциям идут большие потери тепла. Определение утечки тепла через перекрытие такое же как и для стены, но не учитываются дополнительные теплопотери. Коэффициент α берется другой: α вн =8,7 Вт/(м 2 ·К) α вн =6 Вт/(м 2 ·К), разница температур также, ведь в подвале или на крытом чердаке температура принимается в пределах 4-6ºС. Не будем расписывать расчет термического сопротивления для перекрытия, ведь он определяется по той же формуле Rст = 1/ αв + Σ ( δі / λі ) + 1/ α. Возьмем перекрытие с сопротивлением 4,95 и примем воздух на чердаке +4ºС, площадь потолка 3х4м, внутри 22ºС. Подставляем в формулу и получаем:Q=1/R·FΔt·n·β=1/4,95·12·18·0,9= 40 Вт.

Расчет потерь тепла через пол на грунте

Он немного сложнее нежели через перекрытие. Теплопотери рассчитываются по зонам. Зоной называют полосу пола шириной 2 м, параллельно внешней стене. Первая зона находится непосредственно возле стены, здесь происходит больше всего потерь тепла. За ней последуют вторая и другие зоны, до центра пола. Для каждой зоны рассчитывается свой коэффициент теплопередачи. Для упрощения вводится понятие удельного сопротивления: для первой зоны R1=2,15 (м 2 °С/Вт), для второй R2=4,3 (м 2 °С/Вт), для третьей R3=8,6 (м 2 °С/Вт)

Пример Есть комната в которой пол на грунте, размер пола 6х8 м Температуры все те же. Сначала разделим пол на зоны. У нас их получилось две. Находим площадь каждой зоны. У нас это 20 м2 для первой зоны и 8 м2 для второй. Затем задаемся условными сопротивлениями R1=2,15 (м 2 °С/Вт), R2=4,3 (м 2 °С/Вт), подставляем в формулу: Q=(F1/R1+F2/R2+F3/R3)(tвт — tвн)·n=(20/2,15+8/4,3)·42·1= 470 Вт.

Дополнительные теплопотери

Учитываются только для стен и окон, то есть конструкций которые напрямую соприкасаются с окружающей средой. Существует четыре вида дополнительных потерь тепла: на ориентацию, на ветреность, на количество стен и наличие внешних дверей. Выражаются они в процентах и в последствии переводятся в коэффициент дополнительных теплопотерь. Если помещение ориентированно на Север, Восток, Северо-Восток, Северо-Запад дополнительные потери тепла составляют 10%, когда на Юг, Запад, Юго-Запад, Юго-Восток, додаются 5%. Если здание находится в ветреной местности, додаются еще 10% тепловых потерь,а когда в защищенной от ветров местности только 5%. Если в помещении есть две внешние стены, то дополнительные потери составляют 5%, когда только одна — дополнительных потерь нет. Если в наружной стене есть дверь, можно рассчитать убыток сквозь нее, но проще добавить 60% если двери тройные, 80% когда двойные двери и 95% если они одинарные. Например: Комната имеет две внешние стены, размещенная в ветреной местности, одна стена выходит на Юг, вторая на Север, дверей нету. Тогда дополнительные потери составляют 10%+5% на ориентацию +10% на ветер +5% так как две стены. И того 30%, чтобы добавить их к основным теплопотерям нужно перевести в коэффициент β =30% + 100% =30/100 +1 =1,3 и подставляем в общую формулу.

Теплопотери на вентиляцию

Не учитываются, если проектируется воздушное отопление или используется вентустановка с подогревом воздуха, так как воздух в помещение поступает уже теплый, и на его нагрев не тратится тепло. Но если установка без подогрева, необходимо учесть расход тепла на нагрев входящего воздуха. Упрощенная формула выглядит так:

где V — бьем помещения в м3, Δt — разница внешней и наружной температур.

Сума всех потерь тепла и составляет общие потери помещения.

Расчет тепловых потерь в программе Excel

Сам процесс расчета тепловых потерь дома занимает довольно много времени, поэтому для себя мы создали шаблон в Excel, с помощью которого делаем расчеты. Решили с вами поделиться и использовать его можно перейдя по ссылке. Здесь же распишем инструкцию пользования.

Шаг 1

Перейти по ссылке и открыть программный файл. Вы перед собой увидите таблицу такого вида:

Шаг 2

Нужно заполнить исходные данные: номер помещения (если вам нужно), его название и температура внутри, название ограждающих конструкций и их ориентация, размеры конструкций. Вы увидите, что площадь считается сама. Если хотите отнимать площадь окна от стен, нужно корректировать формулы, так как мы не знаем где у вас будут записаны окна. У нас площади отнимаются. Также нужно заполнить коэффициент теплопередачи 1/R, разницу температур и поправочный коэффициент. К сожалению, их заполняют вручную. В примере у нас кабинет с тремя внешними стенами в одной стене два окна, в другой нет окон и третья имеет одно окно. Конструкции стен будет как в примере, где мы рассчитывали R, поесть к=1/R=1/2,64=0,38. Пол пусть будет на грунте и его поделим на зоны у нас их две и потери считаем для двух зон , тогда к1=1/2,15=0,47, к2=1/4,3=0,23. Окна пусть будут энергосберегающие Rо= 0,87 (м 2 °С/Вт), тогда к=1/0,87=1,14.

На картинке видно, что количество потерь тепла уже прорисовывается.

Шаг 3

К сожалению, также вручную заполняются и дополнительные потери. Вводить их нужно в процентах, программа сама в формуле переведет их на коэффициент. И так, для нашего примера: Стены 3 значит к каждой стене +5% теплопотерь, местность не веретенная поэтому +5% к каждому окну и стене, Ориентация на Юг +5% для конструкций, на Север и Восток +10%. Дверей внешних нет поэтому 0, но если бы были то суммировались бы проценты только к той стене в которой есть дверь. Напоминаем, что к полу или перекрытию дополнительные потери тепла не относятся.

Как видно, потери помещения возросли. Если у вас заходит в помещение уже теплый воздух, этот шаг последний. Число записанное в столбце Q, и есть ваши искомые тепловые потери помещения. И эту процедуру нужно провести для всех остальных помещений.

Шаг 4

В нашем же случае воздух не подогревается ,и чтобы рассчитать полные потери тепла, нужно в столбик Rввести площадь нашего помещения 18 м2, а в столбец S его высоту 3 м.

Эта программа значительно ускоряет и упрощает расчеты, даже невзирая на большое количество введенных вручную элементов. Она не раз помогала нам. Надеемся и вам она станет помощником!

Заключение

Правильный расчет теплопотерь покажет, что вы профессионал своего дела. Ведь согласитесь, расчет потерь 100 Вт/м2 слегка преувеличен, а в некоторых случаях недостаточен. Поэтому потратьте на 15 минут больше времени и рассчитайте тепловые потери здания. Исходя из этого вы сможете не только спроектировать более чем комфортные условия пребывания людей, но и сэкономить заказчику немалые средства на эксплуатацию систем. А опыт показывает, что к таким проектировщикам обращаются чаще.

Теплопоступления и теплопотери

Редакция журнала продолжает публикацию отдельных глав книги «Системы вентиляции и кондиционирования. Теория и практика», подготовленной специалистами компании «Евроклимат».

Теплопоступления и теплопотери в результате разности температур.Расчет поступления тепла через внешние ограждающие конструкции в летний период года затрудняется существенными колебаниями температуры наружного воздуха в течение суток и еще большими колебаниями теплового потока на наружных поверхностях ограждений за счет солнечного излучения. Значительное влияние на теплообмен оказывает и массивность ограждений, благодаря чему колебания температуры на их внутренней поверхности уменьшаются.

Потери тепла через ограждающие конструкции в зимний периодгода рассчитывают в предположении стационарного режима, так как зимой значительных колебаний температуры наружного воздуха и особенно колебаний температуры на наружной стороне ограждений не наблюдается. Все теплопоступления в помещения, как правило, переменны во времени. Часть из них зависит от изменения температуры наружного воздуха и притока тепла от солнечного излучения, а остальные являются функцией изменения условий внутри обслуживаемого помещения.

Расчет теплопередачи через ограждения помещений выполняется по известным зависимостям, согласно строительной теплотехнике СНиП 11-3-79*. Расчетные наружные температуры (t,Нрасч) приведены в главе II, а внутренние (tВрасч) выбираются с учетом комфортных условий или технологических требований, предъявляемых к производственным процессам. Количество тепла Qогр, передаваемое через каждое ограждение площадью F, м 2 , имеющее коэффициент теплопередачи k (Вт/м 2 ·°С), определяется по формуле:

где Y — поправочный коэффициент, принимаемый согласно указаниям норм СНиП 2.04.05-91* или ведомственных рекомендаций.

Представленная формула не учитывает ряда факторов, влияющих на величину теплопотерь или теплопоступлений. В частности, необходимо вводить поправочные коэффициенты на ориентацию ограждения на сторону света, на обдувание ветром и его этажность, на проникновение в помещение наружного воздуха через открытые окна, двери и различного рода неплотности. Кроме этого, следует вводить поправку на солнечную радиацию. Все эти коэффициенты являются составными коэффициента Y.

Поглощение солнечного излучения стеной зависит от теплоты самой стены, которая постоянно отражает какую-то часть приходящего тепла. Выбор цвета наружных стен является важным фактором ограничения или усиления теплопритоков. В расчетах учитывается определенный коэффициент поглощения тепла, который может достигать 0,9 для стены темного цвета, 0,7 для цвета серого и 0,5 для стены светлого цвета.

Солнечное излучение, направленное на стену или на крышу (потолок), проявляется в виде избыточного тепла, поступающего в помещение в течение некоторого времени, количество этого тепла зависит от характеристик самой стены. Солнечное излучение повышает температуру наружной поверхности, но так как температуры внутренней поверхности ниже, возникает интенсивный тепловой поток. Обычно чем больше массивность стены (вес стены на квадратный метр площади), тем больше время передачи тепла в помещение. В то же время очень легкая стена передает почти сразу полученное от солнечного излучения тепло в помещение. Такое явление очень важно при определении тепловых нагрузок в помещении. Действительно, очень толстая стена способна задерживать тепловую нагрузку на определенный период, уменьшая таким образом пиковую нагрузку. На рис. 1 это явление показано на примере двух кривых: верхняя кривая отражает значение моментальной тепловой нагрузки, нижняя кривая показывает, как это полученное тепло может быть задержано по времени толстой стеной (более длительная передача).

Верхняя кривая показывает моментальную нагрузку, нижняя кривая отражает эффективную тепловую нагрузку аккумулирования тепла стеной средней толщины.

Для противодействия моментальной тепловой нагрузке было бы необходимым подбирать кондиционер на пиковую моментальную нагрузку. Для нейтрализации уменьшенной тепловой нагрузки достаточно кондиционера намного меньшей мощности, которая может действовать более длительное время. На рис. 2 для сравнения представлены эффекты сглаживания тепловой нагрузки стенами различной толщины; можно наблюдать, как снижается величина тепловой нагрузки по мере утолщения стены здания.

Из вышесказанного можно сделать вывод, что: в зданиях из легких конструкций эффективные тепловые нагрузки являются повышенными и быстро изменяющимися; в зданиях с тяжелыми стенами тепловые нагрузки ниже по величине и изменяются на протяжении длительного времени. Установка кондиционирования в последнем случае менее дорогостоящая.

Теплопоступления от солнечного излучения через остекление

Избыточная теплота солнечного излучения немедленно поглощается средой помещения и, если речь идет о магазинах с большими застекленными витринами, зрелищных помещениях и пр., значительно увеличивает тепловую нагрузку. Действительно, в зависимости от типа стекла почти до 90% тепла солнечного излучения передается в помещение, а остальная часть отражается. В большинстве случаев тепловая нагрузка от солнечного излучения в общественных и административных зданиях может составлять до 50% в общем балансе теплопоступления. Обычно максимальная тепловая нагрузка достигается при максимальном уровне излучения. Солнечное излучение состоит из двух компонентов: прямой составляющей и рассеянной. Интенсивность солнечного излучения зависит от широты местности и варьируется в зависимости от времени года и времени суток.

Поступление тепла от солнечной радиации зависит от рода и структуры материала наружных ограждений, состояния и цвета их поверхности, угла, под которым солнечные лучи падают на поверхность, ориентации поверхности по странам света и др.

Наибольшее поступление тепла от солнечной радиации происходит через остекленные наружные поверхности: окна, фонари.

Расчетные количества тепла, поступающего от солнечной радиации (Вт/м 2 ·ч) через остекленные поверхности, приведены в табл. 1.

Ссылка на основную публикацию
Adblock
detector